## Math 221: LINEAR ALGEBRA

## Chapter 7. Linear Transformations

§7-1. Examples and Elementary Properties

Le Chen ${ }^{1}$<br>Emory University, 2021 Spring

(last updated on $04 / 05 / 2021$ )


What is a Linear Transformations

## Examples and Problems

Properties of Linear Transformations

Constructing Linear Transformations

# What is a Linear Transformations 

## Examples and Problems

## Properties of Linear Transformations

## Constructing Linear Transformations

What is a Linear Transformation?

## What is a Linear Transformation?



## Definition

Let V and W be vector spaces, and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ a function. Then T is called a linear transformation if it satisfies the following two properties.

1. T preserves addition.

For all $\vec{v}_{1}, \vec{v}_{2} \in V, T\left(\vec{v}_{1}+\vec{v}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)$.
2. T preserves scalar multiplication.

For all $\vec{v} \in V$ and $r \in \mathbb{R}, T(r \vec{v})=r T(\vec{v})$.

## What is a Linear Transformation?



## Definition

Let V and W be vector spaces, and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ a function. Then T is called a linear transformation if it satisfies the following two properties.

1. T preserves addition.

For all $\vec{v}_{1}, \vec{v}_{2} \in \mathrm{~V}, \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{1}+\overrightarrow{\mathrm{v}}_{2}\right)=\mathrm{T}\left(\overrightarrow{\mathrm{v}}_{1}\right)+\mathrm{T}\left(\overrightarrow{\mathrm{v}}_{2}\right)$.
2. T preserves scalar multiplication.

For all $\overrightarrow{\mathrm{v}} \in \mathrm{V}$ and $\mathrm{r} \in \mathbb{R}, \mathrm{T}(\mathrm{r} \overrightarrow{\mathrm{v}})=\mathrm{rT}(\overrightarrow{\mathrm{v}})$.

## Remark

Note that the sum $\vec{v}_{1}+\vec{v}_{2}$ is in $V$, while the sum $T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)$ is in W. Similarly, $r \vec{v}$ is scalar multiplication in V, while $\mathrm{rT}(\overrightarrow{\mathrm{v}})$ is scalar multiplication in W.

Theorem ( Linear Transformations from $\mathbb{R}^{\mathrm{n}}$ to $\mathbb{R}^{\mathrm{m}}$ )
If $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation, then T is induced by an $\mathrm{m} \times \mathrm{n}$ matrix

$$
\mathrm{A}=\left[\begin{array}{llll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right) & \cdots & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{\mathrm{n}}\right)
\end{array}\right],
$$

where $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is the standard basis of $\mathbb{R}^{\mathrm{n}}$, and thus for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}} .
$$

## Example

$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by $T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x+y \\ x-z\end{array}\right]$ for all $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$.
One can show that T preserves addition and scalar multiplication, and hence is a linear transformation. Therefore, the matrix that induces T is

$$
\mathrm{A}=\left[\mathrm{T}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & -1
\end{array}\right]
$$

## Remark ( Notation and Terminology )

1. If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then $\mathrm{T}_{\mathrm{A}}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ defined by

$$
\mathrm{T}_{\mathrm{A}}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}} \text { for all } \overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}
$$

is the linear (or matrix) transformation induced by A.
2. Let V be a vector space. A linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is called a linear operator on V .

What is a Linear Transformations

## Examples and Problems

## Properties of Linear Transformations

## Constructing Linear Transformations

## Examples and Problems

## Example

Let V and W be vector spaces.

1. The zero transformation.
$0: \mathrm{V} \rightarrow \mathrm{W}$ is defined by $0(\overrightarrow{\mathrm{x}})=\overrightarrow{0}$ for all $\overrightarrow{\mathrm{x}} \in \mathrm{V}$.

## Examples and Problems

## Example

Let V and W be vector spaces.

1. The zero transformation.
$0: V \rightarrow W$ is defined by $0(\vec{x})=\overrightarrow{0}$ for all $\vec{x} \in \mathrm{~V}$.
2. The identity operator on V.
$1_{\mathrm{V}}: V \rightarrow \mathrm{~V}$ is defined by $1_{\mathrm{V}}(\overrightarrow{\mathrm{x}})=\overrightarrow{\mathrm{x}}$ for all $\overrightarrow{\mathrm{x}} \in \mathrm{V}$.

## Examples and Problems

## Example

Let V and W be vector spaces.

1. The zero transformation.
$0: V \rightarrow W$ is defined by $0(\vec{x})=\overrightarrow{0}$ for all $\vec{x} \in \mathrm{~V}$.
2. The identity operator on V.
$1_{V}: V \rightarrow V$ is defined by $1_{V}(\vec{x})=\vec{x}$ for all $\vec{x} \in V$.
3. The scalar operator on $V$.

Let $\mathrm{a} \in \mathbb{R} . \mathrm{s}_{\mathrm{a}}: \mathrm{V} \rightarrow \mathrm{V}$ is defined by $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{x}})=\mathrm{a} \overrightarrow{\mathrm{x}}$ for all $\overrightarrow{\mathrm{x}} \in \mathrm{V}$.

## Problem

For vector spaces V and W , prove that the zero transformation 0 , the identity operator $1_{\mathrm{V}}$, and the scalar operator $\mathrm{s}_{\mathrm{a}}$ are linear transformations.

## Problem

For vector spaces V and W , prove that the zero transformation 0 , the identity operator $1_{\mathrm{V}}$, and the scalar operator $\mathrm{s}_{\mathrm{a}}$ are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let $\mathrm{a} \in \mathbb{R}$.

## Problem

For vector spaces V and W , prove that the zero transformation 0 , the identity operator $1_{\mathrm{V}}$, and the scalar operator $\mathrm{s}_{\mathrm{a}}$ are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let $\mathrm{a} \in \mathbb{R}$.

1. Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{w}} \in \mathrm{V}$. Then $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})=\mathrm{a} \overrightarrow{\mathrm{u}}$ and $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{w}})=\mathrm{a} \overrightarrow{\mathrm{w}}$. Now

$$
\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})=\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})=\mathrm{a} \overrightarrow{\mathrm{u}}+\mathrm{a} \overrightarrow{\mathrm{w}}=\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})+\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{w}})
$$

and thus $\mathrm{s}_{\mathrm{a}}$ preserves addition.

## Problem

For vector spaces V and W , prove that the zero transformation 0 , the identity operator $1_{\mathrm{V}}$, and the scalar operator $\mathrm{s}_{\mathrm{a}}$ are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let $\mathrm{a} \in \mathbb{R}$.

1. Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{w}} \in \mathrm{V}$. Then $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})=\mathrm{a} \overrightarrow{\mathrm{u}}$ and $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{w}})=\mathrm{a} \overrightarrow{\mathrm{w}}$. Now

$$
\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})=\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})=\mathrm{a} \overrightarrow{\mathrm{u}}+\mathrm{a} \overrightarrow{\mathrm{w}}=\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})+\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{w}})
$$

and thus $\mathrm{s}_{\mathrm{a}}$ preserves addition.
2. Let $\overrightarrow{\mathrm{u}} \in \mathrm{V}$ and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})=\mathrm{a} \overrightarrow{\mathrm{u}}$. Now

$$
\mathrm{s}_{\mathrm{a}}(\mathrm{k} \overrightarrow{\mathrm{u}})=\mathrm{ak} \overrightarrow{\mathrm{u}}=\mathrm{ka} \overrightarrow{\mathrm{u}}=\mathrm{ks}_{\mathrm{a}}(\overrightarrow{\mathrm{u}}),
$$

and thus $\mathrm{s}_{\mathrm{a}}$ preserves scalar multiplication.

## Problem

For vector spaces V and W , prove that the zero transformation 0 , the identity operator $1_{\mathrm{V}}$, and the scalar operator $\mathrm{s}_{\mathrm{a}}$ are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let $\mathrm{a} \in \mathbb{R}$.

1. Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{w}} \in \mathrm{V}$. Then $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})=\mathrm{a} \overrightarrow{\mathrm{u}}$ and $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{w}})=\mathrm{a} \overrightarrow{\mathrm{w}}$. Now

$$
\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})=\mathrm{a}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{w}})=\mathrm{a} \overrightarrow{\mathrm{u}}+\mathrm{a} \overrightarrow{\mathrm{w}}=\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})+\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{w}})
$$

and thus $\mathrm{s}_{\mathrm{a}}$ preserves addition.
2. Let $\overrightarrow{\mathrm{u}} \in \mathrm{V}$ and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{s}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})=\mathrm{a} \overrightarrow{\mathrm{u}}$. Now

$$
\mathrm{s}_{\mathrm{a}}(\mathrm{k} \overrightarrow{\mathrm{u}})=\mathrm{ak} \overrightarrow{\mathrm{u}}=\mathrm{ka} \overrightarrow{\mathrm{u}}=\mathrm{ks}_{\mathrm{a}}(\overrightarrow{\mathrm{u}})
$$

and thus $\mathrm{s}_{\mathrm{a}}$ preserves scalar multiplication.
Since $\mathrm{s}_{\mathrm{a}}$ preserves addition and scalar multiplication, $\mathrm{s}_{\mathrm{a}}$ is a linear transformation.

Problem (Matrix transposition)
Let $\mathrm{R}: \mathbf{M}_{\mathrm{nn}} \rightarrow \mathbf{M}_{\mathrm{nn}}$ be a transformation defined by

$$
R(A)=A^{T} \text { for all } A \in M_{n n} .
$$

Show that R is a linear transformation.

## Problem (Matrix transposition)

Let R: $\mathbf{M}_{\mathrm{nn}} \rightarrow \mathbf{M}_{\mathrm{nn}}$ be a transformation defined by

$$
R(A)=A^{T} \text { for all } A \in M_{n n} .
$$

Show that R is a linear transformation.

Solution

1. Let $A, B \in M_{n n}$. Then $R(A)=A^{T}$ and $R(B)=B^{T}$, so

$$
\mathrm{R}(\mathrm{~A}+\mathrm{B})=(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}=\mathrm{R}(\mathrm{~A})+\mathrm{R}(\mathrm{~B}) .
$$

## Problem (Matrix transposition)

Let R: $\mathbf{M}_{\mathrm{nn}} \rightarrow \mathbf{M}_{\mathrm{nn}}$ be a transformation defined by

$$
R(A)=A^{T} \text { for all } A \in M_{n n} .
$$

Show that R is a linear transformation.

Solution

1. Let $A, B \in M_{n n}$. Then $R(A)=A^{T}$ and $R(B)=B^{T}$, so

$$
\mathrm{R}(\mathrm{~A}+\mathrm{B})=(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}=\mathrm{R}(\mathrm{~A})+\mathrm{R}(\mathrm{~B}) .
$$

2. Let $\mathrm{A} \in \mathrm{M}_{\mathrm{nn}}$ and let $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{R}(\mathrm{A})=\mathrm{A}^{\mathrm{T}}$, and

$$
\mathrm{R}(\mathrm{kA})=(\mathrm{kA})^{\mathrm{T}}=\mathrm{kA}^{\mathrm{T}}=\mathrm{kR}(\mathrm{~A}) .
$$

## Problem (Matrix transposition)

Let R: $\mathbf{M}_{\mathrm{nn}} \rightarrow \mathbf{M}_{\mathrm{nn}}$ be a transformation defined by

$$
R(A)=A^{T} \text { for all } A \in M_{n n} .
$$

Show that R is a linear transformation.

Solution

1. Let $A, B \in M_{n n}$. Then $R(A)=A^{T}$ and $R(B)=B^{T}$, so

$$
\mathrm{R}(\mathrm{~A}+\mathrm{B})=(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}=\mathrm{R}(\mathrm{~A})+\mathrm{R}(\mathrm{~B}) .
$$

2. Let $\mathrm{A} \in \mathrm{M}_{\mathrm{nn}}$ and let $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{R}(\mathrm{A})=\mathrm{A}^{\mathrm{T}}$, and

$$
\mathrm{R}(\mathrm{kA})=(\mathrm{kA})^{\mathrm{T}}=\mathrm{kA}^{\mathrm{T}}=\mathrm{kR}(\mathrm{~A}) .
$$

Since R preserves addition and scalar multiplication, R is a linear transformation.

Problem (Evaluation at a point)
For each $\mathrm{a} \in \mathbb{R}$, the transformation $\mathrm{E}_{\mathrm{a}}: \mathcal{P}_{\mathrm{n}} \rightarrow \mathbb{R}$ is defined by

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a}) \text { for all } \mathrm{p} \in \mathcal{P}_{\mathrm{n}} .
$$

Show that $\mathrm{E}_{\mathrm{a}}$ is a linear transformation.

Problem (Evaluation at a point)
For each $\mathrm{a} \in \mathbb{R}$, the transformation $\mathrm{E}_{\mathrm{a}}: \mathcal{P}_{\mathrm{n}} \rightarrow \mathbb{R}$ is defined by

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a}) \text { for all } \mathrm{p} \in \mathcal{P}_{\mathrm{n}} .
$$

Show that $\mathrm{E}_{\mathrm{a}}$ is a linear transformation.

Solution

1. Let $\mathrm{p}, \mathrm{q} \in \mathcal{P}_{\mathrm{n}}$. Then $\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a})$ and $\mathrm{E}_{\mathrm{a}}(\mathrm{q})=\mathrm{q}(\mathrm{a})$, so

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p}+\mathrm{q})=(\mathrm{p}+\mathrm{q})(\mathrm{a})=\mathrm{p}(\mathrm{a})+\mathrm{q}(\mathrm{a})=\mathrm{E}_{\mathrm{a}}(\mathrm{p})+\mathrm{E}_{\mathrm{a}}(\mathrm{q}) .
$$

Problem (Evaluation at a point)
For each $\mathrm{a} \in \mathbb{R}$, the transformation $\mathrm{E}_{\mathrm{a}}: \mathcal{P}_{\mathrm{n}} \rightarrow \mathbb{R}$ is defined by

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a}) \text { for all } \mathrm{p} \in \mathcal{P}_{\mathrm{n}} .
$$

Show that $\mathrm{E}_{\mathrm{a}}$ is a linear transformation.

Solution

1. Let $\mathrm{p}, \mathrm{q} \in \mathcal{P}_{\mathrm{n}}$. Then $\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a})$ and $\mathrm{E}_{\mathrm{a}}(\mathrm{q})=\mathrm{q}(\mathrm{a})$, so

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p}+\mathrm{q})=(\mathrm{p}+\mathrm{q})(\mathrm{a})=\mathrm{p}(\mathrm{a})+\mathrm{q}(\mathrm{a})=\mathrm{E}_{\mathrm{a}}(\mathrm{p})+\mathrm{E}_{\mathrm{a}}(\mathrm{q}) .
$$

2. Let $\mathrm{p} \in \mathcal{P}_{\mathrm{n}}$ and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a})$ and

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{kp})=(\mathrm{kp})(\mathrm{a})=\mathrm{kp}(\mathrm{a})=\mathrm{kE}_{\mathrm{a}}(\mathrm{p}) .
$$

Problem (Evaluation at a point)
For each $\mathrm{a} \in \mathbb{R}$, the transformation $\mathrm{E}_{\mathrm{a}}: \mathcal{P}_{\mathrm{n}} \rightarrow \mathbb{R}$ is defined by

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a}) \text { for all } \mathrm{p} \in \mathcal{P}_{\mathrm{n}} .
$$

Show that $\mathrm{E}_{\mathrm{a}}$ is a linear transformation.

Solution

1. Let $\mathrm{p}, \mathrm{q} \in \mathcal{P}_{\mathrm{n}}$. Then $\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a})$ and $\mathrm{E}_{\mathrm{a}}(\mathrm{q})=\mathrm{q}(\mathrm{a})$, so

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{p}+\mathrm{q})=(\mathrm{p}+\mathrm{q})(\mathrm{a})=\mathrm{p}(\mathrm{a})+\mathrm{q}(\mathrm{a})=\mathrm{E}_{\mathrm{a}}(\mathrm{p})+\mathrm{E}_{\mathrm{a}}(\mathrm{q}) .
$$

2. Let $\mathrm{p} \in \mathcal{P}_{\mathrm{n}}$ and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{E}_{\mathrm{a}}(\mathrm{p})=\mathrm{p}(\mathrm{a})$ and

$$
\mathrm{E}_{\mathrm{a}}(\mathrm{kp})=(\mathrm{kp})(\mathrm{a})=\mathrm{kp}(\mathrm{a})=\mathrm{kE}_{\mathrm{a}}(\mathrm{p}) .
$$

Since $\mathrm{E}_{\mathrm{a}}$ preserves addition and scalar multiplication, $\mathrm{E}_{\mathrm{a}}$ is a linear transformation.

Problem
Let $\mathrm{S}: \mathrm{M}_{\mathrm{nn}} \rightarrow \mathbb{R}$ be a transformation defined by

$$
\mathrm{S}(\mathrm{~A})=\operatorname{tr}(\mathrm{A}) \text { for all } \mathrm{A} \in \mathrm{M}_{\mathrm{nn}} .
$$

Prove that S is a linear transformation.

## Solution

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ be $\mathrm{n} \times \mathrm{n}$ matrices. Then

$$
S(A)=\sum_{i=1}^{n} a_{i i} \quad \text { and } \quad S(B)=\sum_{i=1}^{n} b_{i i} .
$$

Solution
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ be $\mathrm{n} \times \mathrm{n}$ matrices. Then

$$
S(A)=\sum_{i=1}^{n} a_{i i} \quad \text { and } \quad S(B)=\sum_{i=1}^{n} b_{i i}
$$

1. Since $A+B=\left[a_{i j}+b_{i j}\right]$,

$$
S(A+B)=\operatorname{tr}(A+B)=\sum_{i=1}^{n}\left(a_{i i}+b_{i i}\right)=\left(\sum_{i=1}^{n} a_{i i}\right)+\left(\sum_{i=1}^{n} b_{i i}\right)=S(A)+S(B) .
$$

Solution
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ be $\mathrm{n} \times \mathrm{n}$ matrices. Then

$$
S(A)=\sum_{i=1}^{n} a_{i i} \quad \text { and } \quad S(B)=\sum_{i=1}^{n} b_{i i} .
$$

1. Since $A+B=\left[a_{i j}+b_{i j}\right]$,

$$
\mathrm{S}(\mathrm{~A}+\mathrm{B})=\operatorname{tr}(\mathrm{A}+\mathrm{B})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{ii}}+\mathrm{b}_{\mathrm{ii}}\right)=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}}\right)+\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~b}_{\mathrm{ii}}\right)=\mathrm{S}(\mathrm{~A})+\mathrm{S}(\mathrm{~B}) .
$$

2. Let $\mathrm{k} \in \mathbb{R}$. Since $\mathrm{kA}=\left[\mathrm{k}_{\mathrm{ij}}\right]$,

$$
\mathrm{S}(\mathrm{kA})=\operatorname{tr}(\mathrm{kA})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k} \mathrm{a}_{\mathrm{ii}}=\mathrm{k} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}}=\mathrm{kS}(\mathrm{~A})
$$

Solution
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ be $\mathrm{n} \times \mathrm{n}$ matrices. Then

$$
S(A)=\sum_{i=1}^{n} a_{i i} \quad \text { and } \quad S(B)=\sum_{i=1}^{n} b_{i i} .
$$

1. Since $A+B=\left[a_{i j}+b_{i j}\right]$,

$$
\mathrm{S}(\mathrm{~A}+\mathrm{B})=\operatorname{tr}(\mathrm{A}+\mathrm{B})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{ii}}+\mathrm{b}_{\mathrm{ii}}\right)=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}}\right)+\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~b}_{\mathrm{ii}}\right)=\mathrm{S}(\mathrm{~A})+\mathrm{S}(\mathrm{~B}) .
$$

2. Let $\mathrm{k} \in \mathbb{R}$. Since $\mathrm{kA}=\left[\mathrm{ka}_{\mathrm{ij}}\right]$,

$$
\mathrm{S}(\mathrm{kA})=\operatorname{tr}(\mathrm{kA})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k} a_{\mathrm{ii}}=\mathrm{k} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}}=\mathrm{kS}(\mathrm{~A})
$$

Therefore, S preserves addition and scalar multiplication, and thus is a linear transformation.

## Problem

Show that the differentiation and integration operations on $\mathbf{P}_{\mathrm{n}}$ are linear transformations. More precisely,

$$
\begin{aligned}
\mathrm{D}: \mathbf{P}_{\mathrm{n}} \rightarrow \mathbf{P}_{\mathrm{n}-1} & \text { where } \mathrm{D}[\mathrm{p}(\mathrm{x})]=\mathrm{p}^{\prime}(\mathrm{x}) \text { for all } \mathrm{p}(\mathrm{x}) \text { in } \mathbf{P}_{\mathrm{n}} \\
\mathrm{I}: \mathbf{P}_{\mathrm{n}} \rightarrow \mathbf{P}_{\mathrm{n}+1} & \text { where } \mathrm{I}[\mathrm{p}(\mathrm{x})]=\int_{0}^{\mathrm{x}} \mathrm{p}(\mathrm{t}) \mathrm{dt} \text { for all } \mathrm{p}(\mathrm{x}) \text { in } \mathbf{P}_{\mathrm{n}}
\end{aligned}
$$

are linear transformations.

## Problem

Show that the differentiation and integration operations on $\mathbf{P}_{\mathrm{n}}$ are linear transformations. More precisely,

$$
\begin{array}{cl}
\mathrm{D}: \mathbf{P}_{\mathrm{n}} \rightarrow \mathbf{P}_{\mathrm{n}-1} & \text { where } \mathrm{D}[\mathrm{p}(\mathrm{x})]=\mathrm{p}^{\prime}(\mathrm{x}) \text { for all } \mathrm{p}(\mathrm{x}) \text { in } \mathbf{P}_{\mathrm{n}} \\
\mathrm{I}: \mathbf{P}_{\mathrm{n}} \rightarrow \mathbf{P}_{\mathrm{n}+1} & \text { where } \mathrm{I}[\mathrm{p}(\mathrm{x})]=\int_{0}^{\mathrm{x}} \mathrm{p}(\mathrm{t}) \mathrm{dt} \text { for all } \mathrm{p}(\mathrm{x}) \text { in } \mathbf{P}_{\mathrm{n}}
\end{array}
$$

are linear transformations.

Solution (Sketch)

$$
\begin{array}{r}
{[\mathrm{p}(\mathrm{x})+\mathrm{q}(\mathrm{x})]^{\prime}=\mathrm{p}^{\prime}(\mathrm{x})+\mathrm{q}^{\prime}(\mathrm{x}), \quad[\mathrm{rp}(\mathrm{x})]^{\prime}=(\mathrm{rp})^{\prime}(\mathrm{x})} \\
\int_{0}^{\mathrm{x}}[\mathrm{p}(\mathrm{t})+\mathrm{q}(\mathrm{t})] \mathrm{dt}=\int_{0}^{\mathrm{x}} \mathrm{p}(\mathrm{t}) \mathrm{dt}+\int_{0}^{\mathrm{x}} \mathrm{q}(\mathrm{t}) \mathrm{dt}, \quad \int_{0}^{\mathrm{x}} \mathrm{rp}(\mathrm{t}) \mathrm{dt}=\mathrm{r} \int_{0}^{\mathrm{x}} \mathrm{p}(\mathrm{t}) \mathrm{dt}
\end{array}
$$

## What is a Linear Transformations

## Examples and Problems

Properties of Linear Transformations

## Constructing Linear Transformations

Properties of Linear Transformations

## Properties of Linear Transformations

## Theorem

Let V and W be vector spaces, and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ a linear transformation. Then

1. T preserves the zero vector. $T(\overrightarrow{0})=\overrightarrow{0}$.
2. T preserves additive inverses. For all $\vec{v} \in \mathrm{~V}, \mathrm{~T}(-\overrightarrow{\mathrm{v}})=-\mathrm{T}(\overrightarrow{\mathrm{v}})$.
3. T preserves linear combinations. For all $\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{m}} \in \mathrm{V}$ and all $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}} \in \mathbb{R}$,

$$
\mathrm{T}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{k}_{\mathrm{m}} \overrightarrow{\mathrm{v}}_{\mathrm{m}}\right)=\mathrm{k}_{1} \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{1}\right)+\mathrm{k}_{2} \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{2}\right)+\cdots+\mathrm{k}_{\mathrm{m}} \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{\mathrm{m}}\right) .
$$

## Proof.

1. Let $\overrightarrow{0}_{\mathrm{v}}$ denote the zero vector of V and let $\overrightarrow{0}_{\mathrm{w}}$ denote the zero vector of W . We want to prove that $\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right)=\overrightarrow{0}_{\mathrm{W}}$. Let $\overrightarrow{\mathrm{x}} \in \mathrm{V}$. Then $0 \overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{V}}$ and

$$
\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right)=\mathrm{T}(0 \overrightarrow{\mathrm{x}})=0 \mathrm{~T}(\overrightarrow{\mathrm{x}})=\overrightarrow{0}_{\mathrm{w}} .
$$

## Proof.

1. Let $\overrightarrow{0}_{\mathrm{v}}$ denote the zero vector of V and let $\overrightarrow{0}_{\mathrm{w}}$ denote the zero vector of W. We want to prove that $T\left(\overrightarrow{0}_{\mathrm{V}}\right)=\overrightarrow{0}_{\mathrm{W}}$. Let $\overrightarrow{\mathrm{x}} \in \mathrm{V}$. Then $0 \overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{V}}$ and

$$
\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right)=\mathrm{T}(0 \overrightarrow{\mathrm{x}})=0 \mathrm{~T}(\overrightarrow{\mathrm{x}})=\overrightarrow{0}_{\mathrm{W}} .
$$

2. Let $\vec{v} \in \mathrm{~V}$; then $-\overrightarrow{\mathrm{v}} \in \mathrm{V}$ is the additive inverse of $\overrightarrow{\mathrm{v}}$, so $\overrightarrow{\mathrm{v}}+(-\overrightarrow{\mathrm{v}})=\overrightarrow{0} \mathrm{v}$. Thus

$$
\begin{aligned}
\mathrm{T}(\overrightarrow{\mathrm{v}}+(-\overrightarrow{\mathrm{v}})) & =\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right) \\
\mathrm{T}(\overrightarrow{\mathrm{v}})+\mathrm{T}(-\overrightarrow{\mathrm{v}})) & =\overrightarrow{0}_{\mathrm{W}} \\
\mathrm{~T}(-\overrightarrow{\mathrm{v}}) & =\overrightarrow{0}_{\mathrm{W}}-\mathrm{T}(\overrightarrow{\mathrm{v}})=-\mathrm{T}(\overrightarrow{\mathrm{v}}) .
\end{aligned}
$$

## Proof.

1. Let $\overrightarrow{0}_{\mathrm{V}}$ denote the zero vector of V and let $\overrightarrow{0}_{\mathrm{w}}$ denote the zero vector of W . We want to prove that $\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right)=\overrightarrow{0}_{\mathrm{W}}$. Let $\overrightarrow{\mathrm{x}} \in \mathrm{V}$. Then $0 \overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{V}}$ and

$$
\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right)=\mathrm{T}(0 \overrightarrow{\mathrm{x}})=0 \mathrm{~T}(\overrightarrow{\mathrm{x}})=\overrightarrow{0}_{\mathrm{W}} .
$$

2. Let $\vec{v} \in \mathrm{~V}$; then $-\vec{v} \in \mathrm{~V}$ is the additive inverse of $\overrightarrow{\mathrm{v}}$, so $\overrightarrow{\mathrm{v}}+(-\vec{v})=\overrightarrow{0}_{\mathrm{V}}$. Thus

$$
\begin{aligned}
\mathrm{T}(\overrightarrow{\mathrm{v}}+(-\overrightarrow{\mathrm{v}})) & =\mathrm{T}\left(\overrightarrow{0}_{\mathrm{V}}\right) \\
\mathrm{T}(\overrightarrow{\mathrm{v}})+\mathrm{T}(-\overrightarrow{\mathrm{v}})) & =\overrightarrow{0}_{\mathrm{W}} \\
\mathrm{~T}(-\overrightarrow{\mathrm{v}}) & =\overrightarrow{0}_{\mathrm{W}}-\mathrm{T}(\overrightarrow{\mathrm{v}})=-\mathrm{T}(\overrightarrow{\mathrm{v}}) .
\end{aligned}
$$

3. This result follows from preservation of addition and preservation of scalar multiplication. A formal proof would be by induction on $m$.

## Problem

Let $\mathrm{T}: \mathcal{P}_{2} \rightarrow \mathbb{R}$ be a linear transformation such that

$$
\mathrm{T}\left(\mathrm{x}^{2}+\mathrm{x}\right)=-1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}-\mathrm{x}\right)=1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}+1\right)=3 .
$$

Find $T\left(4 x^{2}+5 x-3\right)$.

## Problem

Let $\mathrm{T}: \mathcal{P}_{2} \rightarrow \mathbb{R}$ be a linear transformation such that

$$
\mathrm{T}\left(\mathrm{x}^{2}+\mathrm{x}\right)=-1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}-\mathrm{x}\right)=1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}+1\right)=3 .
$$

Find $T\left(4 x^{2}+5 x-3\right)$.

Solution ( first )
Suppose $a\left(x^{2}+x\right)+b\left(x^{2}-x\right)+c\left(x^{2}+1\right)=4 x^{2}+5 x-3$. Then

$$
(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{a}-\mathrm{b}) \mathrm{x}+\mathrm{c}=4 \mathrm{x}^{2}+5 \mathrm{x}-3
$$

## Problem

Let $\mathrm{T}: \mathcal{P}_{2} \rightarrow \mathbb{R}$ be a linear transformation such that

$$
\mathrm{T}\left(\mathrm{x}^{2}+\mathrm{x}\right)=-1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}-\mathrm{x}\right)=1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}+1\right)=3 .
$$

Find $T\left(4 x^{2}+5 x-3\right)$.

Solution ( first )
Suppose $a\left(x^{2}+x\right)+b\left(x^{2}-x\right)+c\left(x^{2}+1\right)=4 x^{2}+5 x-3$. Then

$$
(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{a}-\mathrm{b}) \mathrm{x}+\mathrm{c}=4 \mathrm{x}^{2}+5 \mathrm{x}-3
$$

Solving for $\mathrm{a}, \mathrm{b}$, and c results in the unique solution $\mathrm{a}=6, \mathrm{~b}=1, \mathrm{c}=-3$.

## Problem

Let $\mathrm{T}: \mathcal{P}_{2} \rightarrow \mathbb{R}$ be a linear transformation such that

$$
\mathrm{T}\left(\mathrm{x}^{2}+\mathrm{x}\right)=-1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}-\mathrm{x}\right)=1 ; \quad \mathrm{T}\left(\mathrm{x}^{2}+1\right)=3 .
$$

Find $T\left(4 x^{2}+5 x-3\right)$.

Solution ( first )
Suppose $\mathrm{a}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{b}\left(\mathrm{x}^{2}-\mathrm{x}\right)+\mathrm{c}\left(\mathrm{x}^{2}+1\right)=4 \mathrm{x}^{2}+5 \mathrm{x}-3$. Then

$$
(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{a}-\mathrm{b}) \mathrm{x}+\mathrm{c}=4 \mathrm{x}^{2}+5 \mathrm{x}-3
$$

Solving for $\mathrm{a}, \mathrm{b}$, and c results in the unique solution $\mathrm{a}=6, \mathrm{~b}=1, \mathrm{c}=-3$. Thus

$$
\begin{aligned}
\mathrm{T}\left(4 \mathrm{x}^{2}+5 \mathrm{x}-3\right) & =\mathrm{T}\left(6\left(\mathrm{x}^{2}+\mathrm{x}\right)+\left(\mathrm{x}^{2}-\mathrm{x}\right)-3\left(\mathrm{x}^{2}+1\right)\right) \\
& =6 \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{T}\left(\mathrm{x}^{2}-\mathrm{x}\right)-3 \mathrm{~T}\left(\mathrm{x}^{2}+1\right) \\
& =6(-1)+1-3(3)=-14
\end{aligned}
$$

Solution ( second )
Notice that $S=\left\{x^{2}+x, x^{2}-x, x^{2}+1\right\}$ is a basis of $\mathcal{P}_{2}$, and thus $x^{2}, x$, and 1 can each be written as a linear combination of elements of $S$.

Solution ( second )
Notice that $S=\left\{x^{2}+x, x^{2}-x, x^{2}+1\right\}$ is a basis of $\mathcal{P}_{2}$, and thus $x^{2}, x$, and 1 can each be written as a linear combination of elements of $S$.

$$
\begin{aligned}
\mathrm{x}^{2} & =\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
\mathrm{x} & =\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
1 & =\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)
\end{aligned}
$$

Solution ( second )
Notice that $S=\left\{x^{2}+x, x^{2}-x, x^{2}+1\right\}$ is a basis of $\mathcal{P}_{2}$, and thus $x^{2}, x$, and 1 can each be written as a linear combination of elements of $S$.

$$
\begin{aligned}
& \mathrm{x}^{2}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& \mathrm{x}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& 1=\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) . \\
& \Downarrow \\
& \Downarrow \\
& \mathrm{T}\left(\mathrm{x}^{2}\right)= \mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)+\frac{1}{2}(1)=0 .
\end{aligned}
$$

Solution ( second )
Notice that $\mathrm{S}=\left\{\mathrm{x}^{2}+\mathrm{x}, \mathrm{x}^{2}-\mathrm{x}, \mathrm{x}^{2}+1\right\}$ is a basis of $\mathcal{P}_{2}$, and thus $\mathrm{x}^{2}, \mathrm{x}$, and 1 can each be written as a linear combination of elements of $S$.

$$
\begin{aligned}
& \mathrm{x}^{2}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& \mathrm{x}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& 1=\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) . \\
& \Downarrow \\
& \Downarrow
\end{aligned} \quad \begin{aligned}
& \mathrm{T}\left(\mathrm{x}^{2}\right)= \mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)+\frac{1}{2}(1)=0 . \\
& \mathrm{T}(\mathrm{x})=\mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)-\frac{1}{2}(1)=-1 .
\end{aligned}
$$

Solution ( second )
Notice that $\mathrm{S}=\left\{\mathrm{x}^{2}+\mathrm{x}, \mathrm{x}^{2}-\mathrm{x}, \mathrm{x}^{2}+1\right\}$ is a basis of $\mathcal{P}_{2}$, and thus $\mathrm{x}^{2}, \mathrm{x}$, and 1 can each be written as a linear combination of elements of $S$.

$$
\begin{aligned}
& \mathrm{x}^{2}= \frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& \mathrm{x}= \frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& 1=\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) . \\
& \Downarrow \\
& \Downarrow
\end{aligned} \quad \begin{aligned}
& \\
& \mathrm{T}\left(\mathrm{x}^{2}\right)= \mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)+\frac{1}{2}(1)=0 . \\
& \mathrm{T}(\mathrm{x})= \mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)-\frac{1}{2}(1)=-1 . \\
& \mathrm{T}(1)= \mathrm{T}\left(\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right) \\
&= \mathrm{T}\left(\mathrm{x}^{2}+1\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= 3-\frac{1}{2}(-1)-\frac{1}{2}(1)=3 .
\end{aligned}
$$

Solution ( second )
Notice that $\mathrm{S}=\left\{\mathrm{x}^{2}+\mathrm{x}, \mathrm{x}^{2}-\mathrm{x}, \mathrm{x}^{2}+1\right\}$ is a basis of $\mathcal{P}_{2}$, and thus $\mathrm{x}^{2}, \mathrm{x}$, and 1 can each be written as a linear combination of elements of $S$.

$$
\begin{aligned}
& \mathrm{x}^{2}= \frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& \mathrm{x}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
& 1=\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right) . \\
& \Downarrow \\
& \Downarrow \\
& \mathrm{T}\left(\mathrm{x}^{2}\right)= \mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)+\frac{1}{2}(1)=0 . \\
& \mathrm{T}(\mathrm{x})=\mathrm{T}\left(\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right)=\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= \frac{1}{2}(-1)-\frac{1}{2}(1)=-1 . \\
& \mathrm{T}(1)=\mathrm{T}\left(\left(\mathrm{x}^{2}+1\right)-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2}\left(\mathrm{x}^{2}-\mathrm{x}\right)\right) \\
&= \mathrm{T}\left(\mathrm{x}^{2}+1\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}+\mathrm{x}\right)-\frac{1}{2} \mathrm{~T}\left(\mathrm{x}^{2}-\mathrm{x}\right) \\
&= 3-\frac{1}{2}(-1)-\frac{1}{2}(1)=3 . \\
& \downarrow
\end{aligned}
$$

$$
\mathrm{T}\left(4 \mathrm{x}^{2}+5 \mathrm{x}-3\right)=4 \mathrm{~T}\left(\mathrm{x}^{2}\right)+5 \mathrm{~T}(\mathrm{x})-3 \mathrm{~T}(1)=4(0)+5(-1)-3(3)=-14
$$

## Remark

The advantage of the second solution over the first is that if you were now asked to find $T\left(-6 x^{2}-13 x+9\right)$, it is easy to use $T\left(x^{2}\right)=0, T(x)=-1$ and $\mathrm{T}(1)=3:$

$$
\begin{aligned}
\mathrm{T}\left(-6 \mathrm{x}^{2}-13 \mathrm{x}+9\right) & =-6 \mathrm{~T}\left(\mathrm{x}^{2}\right)-13 \mathrm{~T}(\mathrm{x})+9 \mathrm{~T}(1) \\
& =-6(0)-13(-1)+9(3)=13+27=40 .
\end{aligned}
$$

## Remark

The advantage of the second solution over the first is that if you were now asked to find $T\left(-6 x^{2}-13 x+9\right)$, it is easy to use $T\left(x^{2}\right)=0, T(x)=-1$ and $\mathrm{T}(1)=3:$

$$
\begin{aligned}
\mathrm{T}\left(-6 \mathrm{x}^{2}-13 \mathrm{x}+9\right) & =-6 \mathrm{~T}\left(\mathrm{x}^{2}\right)-13 \mathrm{~T}(\mathrm{x})+9 \mathrm{~T}(1) \\
& =-6(0)-13(-1)+9(3)=13+27=40
\end{aligned}
$$

More generally,

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right) & =\mathrm{aT}\left(\mathrm{x}^{2}\right)+\mathrm{bT}(\mathrm{x})+\mathrm{cT}(1) \\
& =\mathrm{a}(0)+\mathrm{b}(-1)+\mathrm{c}(3)=-\mathrm{b}+3 \mathrm{c}
\end{aligned}
$$

## Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations from V to W . Then $\mathrm{S}=\mathrm{T}$ if and only if,

$$
S(\vec{v})=T(\vec{v}) \quad \text { for every } \vec{v} \in V .
$$

## Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations from V to W . Then $\mathrm{S}=\mathrm{T}$ if and only if,

$$
S(\vec{v})=T(\vec{v}) \quad \text { for every } \vec{v} \in V .
$$

## Theorem

Let V and W be vector spaces, where

$$
\mathrm{V}=\operatorname{span}\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{n}}\right\} .
$$

Suppose that S and T are linear transformations from V to W. If $\mathrm{S}\left(\overrightarrow{\mathrm{v}}_{\mathrm{i}}\right)=\mathrm{T}\left(\overrightarrow{\mathrm{v}}_{\mathrm{i}}\right)$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, then $\mathrm{S}=\mathrm{T}$.

## Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations from V to W . Then $\mathrm{S}=\mathrm{T}$ if and only if,

$$
\mathrm{S}(\overrightarrow{\mathrm{v}})=\mathrm{T}(\overrightarrow{\mathrm{v}}) \quad \text { for every } \overrightarrow{\mathrm{v}} \in \mathrm{~V} .
$$

## Theorem

Let V and W be vector spaces, where

$$
\mathrm{V}=\operatorname{span}\left\{\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{n}}\right\} .
$$

Suppose that S and T are linear transformations from V to W. If $\mathrm{S}\left(\overrightarrow{\mathrm{v}}_{\mathrm{i}}\right)=\mathrm{T}\left(\overrightarrow{\mathrm{v}}_{\mathrm{i}}\right)$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, then $\mathrm{S}=\mathrm{T}$.

## Remark

This theorem tells us that a linear transformation is completely determined by its actions on a spanning set.

## Proof.

We must show that $S(\vec{v})=T(\vec{v})$ for each $\vec{v} \in V$. Let $\vec{v} \in V$. Then (since $V$ is spanned by $\left.\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{n}}\right)$, there exist $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}} \in \mathbb{R}$ so that

$$
\overrightarrow{\mathrm{v}}=\mathrm{k}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{v}}_{\mathrm{n}} .
$$

## Proof.

We must show that $S(\vec{v})=T(\vec{v})$ for each $\vec{v} \in V$. Let $\vec{v} \in V$. Then (since $V$ is spanned by $\left.\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \ldots, \overrightarrow{\mathrm{v}}_{\mathrm{n}}\right)$, there exist $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}} \in \mathbb{R}$ so that

$$
\overrightarrow{\mathrm{v}}=\mathrm{k}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{v}}_{\mathrm{n}} .
$$

It follows that

$$
\begin{aligned}
\mathrm{S}(\overrightarrow{\mathrm{v}}) & =\mathrm{S}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{v}}_{\mathrm{n}}\right) \\
& =\mathrm{k}_{1} \mathrm{~S}\left(\overrightarrow{\mathrm{v}}_{1}\right)+\mathrm{k}_{2} \mathrm{~S}\left(\overrightarrow{\mathrm{v}}_{2}\right)+\cdots+\mathrm{k}_{\mathrm{n}} \mathrm{~S}\left(\overrightarrow{\mathrm{v}}_{\mathrm{n}}\right) \\
& =\mathrm{k}_{1} \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{1}\right)+\mathrm{k}_{2} \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{2}\right)+\cdots+\mathrm{k}_{\mathrm{n}} \mathrm{~T}\left(\overrightarrow{\mathrm{v}}_{\mathrm{n}}\right) \\
& =\mathrm{T}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{v}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{v}}_{\mathrm{n}}\right) \\
& =\mathrm{T}(\overrightarrow{\mathrm{v}}) .
\end{aligned}
$$

Therefore, $\mathrm{S}=\mathrm{T}$.

## What is a Linear Transformations

## Examples and Problems

## Properties of Linear Transformations

Constructing Linear Transformations

## Constructing Linear Transformations

## Constructing Linear Transformations



## Theorem

Let $V$ and $W$ be vector spaces, let $B=\left\{\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \ldots, \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right\}$ be a basis of $V$, and let $\overrightarrow{\mathrm{w}}_{1}, \overrightarrow{\mathrm{w}}_{2}, \ldots, \overrightarrow{\mathrm{w}}_{\mathrm{n}}$ be (not necessarily distinct) vectors of W .

## Constructing Linear Transformations



## Theorem

Let $V$ and $W$ be vector spaces, let $B=\left\{\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \ldots, \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right\}$ be a basis of V , and let $\overrightarrow{\mathrm{w}}_{1}, \overrightarrow{\mathrm{w}}_{2}, \ldots, \overrightarrow{\mathrm{w}}_{\mathrm{n}}$ be (not necessarily distinct) vectors of W. Then

1. There exists a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ such that $\mathrm{T}\left(\overrightarrow{\mathrm{b}}_{\mathrm{i}}\right)=\overrightarrow{\mathrm{w}}_{\mathrm{i}}$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$;

## Constructing Linear Transformations



## Theorem

Let $V$ and $W$ be vector spaces, let $B=\left\{\vec{b}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \ldots, \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right\}$ be a basis of $V$, and let $\overrightarrow{\mathrm{w}}_{1}, \overrightarrow{\mathrm{w}}_{2}, \ldots, \overrightarrow{\mathrm{w}}_{\mathrm{n}}$ be (not necessarily distinct) vectors of $W$. Then

1. There exists a linear transformation $T: V \rightarrow W$ such that $T\left(\overrightarrow{\mathrm{~b}}_{\mathrm{i}}\right)=\overrightarrow{\mathrm{w}}_{\mathrm{i}}$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
2. This transformation is unique;

## Constructing Linear Transformations



## Theorem

Let $V$ and $W$ be vector spaces, let $B=\left\{\vec{b}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \ldots, \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right\}$ be a basis of $V$, and let $\overrightarrow{\mathrm{w}}_{1}, \overrightarrow{\mathrm{w}}_{2}, \ldots, \overrightarrow{\mathrm{w}}_{\mathrm{n}}$ be (not necessarily distinct) vectors of $W$. Then

1. There exists a linear transformation $T: V \rightarrow W$ such that $T\left(\vec{b}_{i}\right)=\overrightarrow{\mathrm{w}}_{\mathrm{i}}$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
2. This transformation is unique;
3. If

$$
\overrightarrow{\mathrm{v}}=\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}
$$

is a vector of V , then

$$
\mathrm{T}(\overrightarrow{\mathrm{v}})=\mathrm{k}_{1} \overrightarrow{\mathrm{w}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}} .
$$

## Proof.

Suppose $\overrightarrow{\mathrm{v}} \in \mathrm{V}$. Since B is a basis, there exist unique scalars
$\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}} \in \mathbb{R}$ so that $\overrightarrow{\mathrm{v}}=\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{b}}_{\mathrm{n}}$. We now define $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ by

$$
\mathrm{T}(\overrightarrow{\mathrm{v}})=\mathrm{k}_{1} \overrightarrow{\mathrm{w}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}}
$$

for each $\vec{v}=k_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{b}}_{\mathrm{n}}$ in V. From this definition, $\mathrm{T}\left(\overrightarrow{\mathrm{b}}_{\mathrm{i}}\right)=\overrightarrow{\mathrm{w}}_{\mathrm{i}}$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.

To prove that T is a linear transformation, prove that T preserves addition and scalar multiplication. Let $\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{u}} \in \mathrm{V}$. Then

$$
\overrightarrow{\mathrm{v}}=\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}} \quad \text { and } \quad \overrightarrow{\mathrm{u}}=\ell_{1} \overrightarrow{\mathrm{~b}}_{1}+\ell_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}
$$

for some $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}} \in \mathbb{R}$ and $\ell_{1}, \ell_{2}, \ldots, \ell_{\mathrm{n}} \in \mathbb{R}$.

Proof. (continued)

$$
\begin{aligned}
\mathrm{T}(\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{u}}) & =\mathrm{T}\left[\left(\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)+\left(\ell_{1} \overrightarrow{\mathrm{~b}}_{1}+\ell_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)\right] \\
& =\mathrm{T}\left[\left(\mathrm{k}_{1}+\ell_{1}\right) \overrightarrow{\mathrm{b}}_{1}+\left(\mathrm{k}_{2}+\ell_{2}\right) \overrightarrow{\mathrm{b}}_{2}+\cdots+\left(\mathrm{k}_{\mathrm{n}}+\ell_{\mathrm{n}}\right) \overrightarrow{\mathrm{b}}_{\mathrm{n}}\right] \\
& =\left(\mathrm{k}_{1}+\ell_{1}\right) \overrightarrow{\mathrm{w}}_{1}+\left(\mathrm{k}_{2}+\ell_{2}\right) \overrightarrow{\mathrm{w}}_{2}+\cdots+\left(\mathrm{k}_{\mathrm{n}}+\ell_{\mathrm{n}}\right) \overrightarrow{\mathrm{w}}_{\mathrm{n}} \\
& =\left(\mathrm{k}_{1} \overrightarrow{\mathrm{w}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}}\right)+\left(\ell_{1} \overrightarrow{\mathrm{w}}_{1}+\ell_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}}\right) \\
& =\mathrm{T}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\overrightarrow{\mathrm{k}}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)+\mathrm{T}\left(\ell_{1} \overrightarrow{\mathrm{~b}}_{1}+\ell_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right) \\
& =\mathrm{T}(\overrightarrow{\mathrm{v}})+\mathrm{T}(\overrightarrow{\mathrm{u}}) .
\end{aligned}
$$

Therefore, T preserves addition.

Proof. (continued)

$$
\begin{aligned}
\mathrm{T}(\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{u}}) & =\mathrm{T}\left[\left(\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)+\left(\ell_{1} \overrightarrow{\mathrm{~b}}_{1}+\ell_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)\right] \\
& =\mathrm{T}\left[\left(\mathrm{k}_{1}+\ell_{1}\right) \overrightarrow{\mathrm{b}}_{1}+\left(\mathrm{k}_{2}+\ell_{2}\right) \overrightarrow{\mathrm{b}}_{2}+\cdots+\left(\mathrm{k}_{\mathrm{n}}+\ell_{\mathrm{n}}\right) \overrightarrow{\mathrm{b}}_{\mathrm{n}}\right] \\
& =\left(\mathrm{k}_{1}+\ell_{1}\right) \overrightarrow{\mathrm{w}}_{1}+\left(\mathrm{k}_{2}+\ell_{2}\right) \overrightarrow{\mathrm{w}}_{2}+\cdots+\left(\mathrm{k}_{\mathrm{n}}+\ell_{\mathrm{n}}\right) \overrightarrow{\mathrm{w}}_{\mathrm{n}} \\
& =\left(\mathrm{k}_{1} \overrightarrow{\mathrm{w}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\overrightarrow{\mathrm{k}}_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}}\right)+\left(\ell_{1} \overrightarrow{\mathrm{w}}_{1}+\ell_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}}\right) \\
& =\mathrm{T}\left(\overrightarrow{\mathrm{k}}_{1} \overrightarrow{\mathrm{~b}}_{1}+\vec{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\overrightarrow{\mathrm{k}}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)+\mathrm{T}\left(\ell_{1} \overrightarrow{\mathrm{~b}}_{1}+\ell_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\ell_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right) \\
& =\mathrm{T}(\overrightarrow{\mathrm{v}})+\mathrm{T}(\overrightarrow{\mathrm{u}}) .
\end{aligned}
$$

Therefore, $T$ preserves addition. Let $\overrightarrow{\mathrm{v}}$ be as already defined and let $\mathrm{r} \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathrm{T}(\mathrm{r} \overrightarrow{\mathrm{v}}) & =\mathrm{T}\left[\mathrm{r}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right)\right] \\
& =\mathrm{T}\left[\left(\mathrm{rk}_{1}\right) \overrightarrow{\mathrm{b}}_{1}+\left(\mathrm{rk}_{2}\right) \overrightarrow{\mathrm{b}}_{2}+\cdots+\left(\mathrm{rk}_{\mathrm{n}}\right) \overrightarrow{\mathrm{b}}_{\mathrm{n}}\right] \\
& =\left(\mathrm{rk}_{1}\right) \overrightarrow{\mathrm{w}}_{1}+\left(\mathrm{rk}_{2}\right) \overrightarrow{\mathrm{w}}_{2}+\cdots+\left(\mathrm{rk}_{\mathrm{n}}\right) \overrightarrow{\mathrm{w}}_{\mathrm{n}} \\
& =\mathrm{r}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{w}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{w}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{w}}_{\mathrm{n}}\right) \\
& =\mathrm{rT}\left(\mathrm{k}_{1} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{~b}}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{~b}}_{\mathrm{n}}\right) \\
& =\mathrm{rT}(\overrightarrow{\mathrm{v}}) .
\end{aligned}
$$

Therefore, T preserves scalar multiplication.

## Proof. (continued)

Finally, the previous Theorem guarantees that T is unique: since B is a basis (and hence a spanning set), the action of T is completely determined by the fact that $\mathrm{T}\left(\overrightarrow{\mathrm{b}}_{\mathrm{i}}\right)=\overrightarrow{\mathrm{w}}_{\mathrm{i}}$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$. This completes the proof of the theorem.

## Proof. (continued)

Finally, the previous Theorem guarantees that T is unique: since B is a basis (and hence a spanning set), the action of T is completely determined by the fact that $T\left(\vec{b}_{i}\right)=\vec{w}_{i}$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$. This completes the proof of the theorem.

## Remark

The significance of this Theorem is that it gives us the ability to define linear transformations between vector spaces, a useful tool in what follows.

$$
\begin{gathered}
1+x \\
x+x^{2} \\
1+x^{2} \\
\mathcal{P}_{2}
\end{gathered}
$$



Problem
$\mathrm{B}=\left\{1+\mathrm{x}, \mathrm{x}+\mathrm{x}^{2}, 1+\mathrm{x}^{2}\right\}$ is a basis of $\mathcal{P}_{2}$. Let

$$
\mathrm{A}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \mathrm{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathrm{A}_{3}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$



Problem
$\mathrm{B}=\left\{1+\mathrm{x}, \mathrm{x}+\mathrm{x}^{2}, 1+\mathrm{x}^{2}\right\}$ is a basis of $\mathcal{P}_{2}$. Let

$$
\mathrm{A}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \mathrm{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathrm{A}_{3}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Find a linear transformation $\mathrm{T}: \mathcal{P}_{2} \rightarrow \mathrm{M}_{22}$ so the

$$
\mathrm{T}(1+\mathrm{x})=\mathrm{A}_{1}, \quad \mathrm{~T}\left(\mathrm{x}+\mathrm{x}^{2}\right)=\mathrm{A}_{2}, \quad \text { and } \quad \mathrm{T}\left(1+\mathrm{x}^{2}\right)=\mathrm{A}_{3},
$$



Problem
$\mathrm{B}=\left\{1+\mathrm{x}, \mathrm{x}+\mathrm{x}^{2}, 1+\mathrm{x}^{2}\right\}$ is a basis of $\mathcal{P}_{2}$. Let

$$
\mathrm{A}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \mathrm{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathrm{A}_{3}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Find a linear transformation $\mathrm{T}: \mathcal{P}_{2} \rightarrow \mathbf{M}_{22}$ so the

$$
\mathrm{T}(1+\mathrm{x})=\mathrm{A}_{1}, \quad \mathrm{~T}\left(\mathrm{x}+\mathrm{x}^{2}\right)=\mathrm{A}_{2}, \quad \text { and } \quad \mathrm{T}\left(1+\mathrm{x}^{2}\right)=\mathrm{A}_{3},
$$

by specifying $T\left(a+b x+c x^{2}\right)$ for any $a+b x+c x^{2} \in \mathcal{P}_{2}$.

## Solution

Notice that $(1+\mathrm{x})+\left(\mathrm{x}+\mathrm{x}^{2}\right)-\left(1+\mathrm{x}^{2}\right)=2 \mathrm{x}$, and thus

$$
\begin{gathered}
\mathrm{x}=\frac{1}{2}(1+\mathrm{x})+\frac{1}{2}\left(\mathrm{x}+\mathrm{x}^{2}\right)-\frac{1}{2}\left(1+\mathrm{x}^{2}\right), \\
\Downarrow \\
\mathrm{T}(\mathrm{x})=\frac{1}{2} \mathrm{~T}(1+\mathrm{x})+\frac{1}{2} \mathrm{~T}\left(\mathrm{x}+\mathrm{x}^{2}\right)-\frac{1}{2} \mathrm{~T}\left(1+\mathrm{x}^{2}\right) \\
= \\
=\frac{1}{2} \mathrm{~A}_{1}+\frac{1}{2} \mathrm{~A}_{2}-\frac{1}{2} \mathrm{~A}_{3} \\
= \\
\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{gathered}
$$

Solution (continued)
Next, $1=(1+\mathrm{x})-\mathrm{x}$, so $\mathrm{T}(1)=\mathrm{T}(1+\mathrm{x})-\mathrm{T}(\mathrm{x})$, and thus

$$
\mathrm{T}(1)=\mathrm{A}_{1}-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

Solution (continued)
Next, $1=(1+x)-x$, so $T(1)=T(1+x)-T(x)$, and thus

$$
\mathrm{T}(1)=\mathrm{A}_{1}-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

Finally, $\mathrm{x}^{2}=\left(\mathrm{x}+\mathrm{x}^{2}\right)-\mathrm{x}$, so $\mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{T}\left(\mathrm{x}+\mathrm{x}^{2}\right)-\mathrm{T}(\mathrm{x})$, and thus

$$
\mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{A}_{2}-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right] .
$$

Solution (continued)
Next, $1=(1+\mathrm{x})-\mathrm{x}$, so $\mathrm{T}(1)=\mathrm{T}(1+\mathrm{x})-\mathrm{T}(\mathrm{x})$, and thus

$$
\mathrm{T}(1)=\mathrm{A}_{1}-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

Finally, $\mathrm{x}^{2}=\left(\mathrm{x}+\mathrm{x}^{2}\right)-\mathrm{x}$, so $\mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{T}\left(\mathrm{x}+\mathrm{x}^{2}\right)-\mathrm{T}(\mathrm{x})$, and thus

$$
\mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{A}_{2}-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right] .
$$

Therefore,

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\right) & =\mathrm{aT}(1)+\mathrm{bT}(\mathrm{x})+\mathrm{cT}\left(\mathrm{x}^{2}\right) \\
& =\frac{a}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{b}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]+\frac{c}{2}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{rr}
a+b-c & -a+b+c \\
-a+b+c & a-b+c
\end{array}\right] .
\end{aligned}
$$

Solution (Two - sketch )
Since the set $\left\{1+\mathrm{x}, \mathrm{x}+\mathrm{x}^{2}, 1+\mathrm{x}^{2}\right\}$ is a basis of $\mathcal{P}_{2}$, there exits unique representation:

$$
\begin{gathered}
\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}=\ell_{1}(1+\mathrm{x})+\ell_{2}\left(\mathrm{x}+\mathrm{x}^{2}\right)+\ell_{3}\left(1+\mathrm{x}^{2}\right) \\
=\left(\ell_{1}+\ell_{3}\right)+\left(\ell_{1}+\ell_{2}\right) \mathrm{x}+\left(\ell_{2}+\ell_{3}\right) \mathrm{x}^{2} \\
\Downarrow \\
\left\{\begin{array}{l}
\ell_{1}+\ell_{3}=\mathrm{a} \\
\ell_{1}+\ell_{2}=\mathrm{b} \\
\ell_{2}+\ell_{3}=\mathrm{c}
\end{array}\right. \\
\Downarrow \\
\left\{\begin{array}{l}
\ell_{1}=\frac{1}{2}(\mathrm{a}+\mathrm{b}-\mathrm{c}) \\
\ell_{2}=\frac{1}{2}(-\mathrm{a}+\mathrm{b}+\mathrm{c}) \\
\ell_{3}=\frac{1}{2}(\mathrm{a}-\mathrm{b}-\mathrm{c})
\end{array}\right.
\end{gathered}
$$

Solution (Two - sketch )
Since the set $\left\{1+\mathrm{x}, \mathrm{x}+\mathrm{x}^{2}, 1+\mathrm{x}^{2}\right\}$ is a basis of $\mathcal{P}_{2}$, there exits unique representation:

$$
\begin{gathered}
\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}=\ell_{1}(1+\mathrm{x})+\ell_{2}\left(\mathrm{x}+\mathrm{x}^{2}\right)+\ell_{3}\left(1+\mathrm{x}^{2}\right) \\
=\left(\ell_{1}+\ell_{3}\right)+\left(\ell_{1}+\ell_{2}\right) \mathrm{x}+\left(\ell_{2}+\ell_{3}\right) \mathrm{x}^{2} \\
\Downarrow \\
\left\{\begin{array}{l}
\ell_{1}+\ell_{3}=\mathrm{a} \\
\ell_{1}+\ell_{2}=\mathrm{b} \\
\ell_{2}+\ell_{3}=\mathrm{c}
\end{array}\right. \\
\Downarrow \\
\left\{\begin{array}{l}
\ell_{1}=\frac{1}{2}(\mathrm{a}+\mathrm{b}-\mathrm{c}) \\
\ell_{2}=\frac{1}{2}(-\mathrm{a}+\mathrm{b}+\mathrm{c}) \\
\ell_{3}=\frac{1}{2}(\mathrm{a}-\mathrm{b}-\mathrm{c})
\end{array}\right.
\end{gathered}
$$

Solution (Two - continued)
Hence,

$$
\begin{gathered}
\mathrm{T}\left[\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\right] \\
\| \\
\mathrm{T}\left[\ell_{1}(1+\mathrm{x})+\ell_{2}\left(\mathrm{x}+\mathrm{x}^{2}\right)+\ell_{3}\left(1+\mathrm{x}^{2}\right)\right] \\
\| \\
\ell_{1} \mathrm{~T}[1+\mathrm{x}]+\ell_{2} \mathrm{~T}\left[\mathrm{x}+\mathrm{x}^{2}\right]+\ell_{3} \mathrm{~T}\left[1+\mathrm{x}^{2}\right] \\
\| \\
\ell_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\ell_{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\ell_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
\| \\
\frac{1}{2}(\mathrm{a}+\mathrm{b}-\mathrm{c})\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2}(-\mathrm{a}+\mathrm{b}+\mathrm{c})\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\frac{1}{2}(\mathrm{a}-\mathrm{b}+\mathrm{c})\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
\| \\
=\frac{1}{2}\left[\begin{array}{rr}
\mathrm{a}+\mathrm{b}-\mathrm{c} & -\mathrm{a}+\mathrm{b}+\mathrm{c} \\
-\mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}-\mathrm{b}+\mathrm{c}
\end{array}\right]
\end{gathered}
$$



Problem
Let V be a vector space, and T be a linear operator on V , and $\mathbf{v}$, $\mathbf{w} \in \mathrm{V}$ such that

$$
\mathrm{T}(\mathrm{v}+\mathrm{w})=\mathrm{v}-2 \mathrm{w} \quad \text { and } \quad \mathrm{T}(2 \mathrm{v}-\mathrm{w})=2 \mathrm{v} .
$$



## Problem

Let V be a vector space, and T be a linear operator on V , and $\mathbf{v}$, $\mathbf{w} \in \mathrm{V}$ such that

$$
\mathrm{T}(\mathrm{v}+\mathrm{w})=\mathrm{v}-2 \mathrm{w} \quad \text { and } \quad \mathrm{T}(2 \mathrm{v}-\mathrm{w})=2 \mathrm{v} .
$$

Find $\mathrm{T}(\mathrm{v})$ and $\mathrm{T}(\mathrm{w})$.

Solution

$$
\begin{aligned}
T(\mathbf{v}) & =T\left[\frac{1}{3}([\mathbf{v}+\mathbf{w}]+[2 \mathbf{v}-\mathbf{w}])\right] \\
& =\frac{1}{3} T[\mathbf{v}+\mathbf{w}]+\frac{1}{3} T[2 \mathbf{v}-\mathbf{w}] \\
& =\frac{1}{3}(\mathbf{v}-2 \mathbf{w})+\frac{2}{3} \mathbf{v} \\
& =\mathbf{v}-\frac{2}{3} \mathbf{w}
\end{aligned}
$$

Similarly, as an exercise, $T(\mathbf{w})=-\frac{4}{3} \mathbf{w}$.

