Math 221: LINEAR ALGEBRA

Chapter 7. Linear Transformations

§7-1. Examples and Elementary Properties

Le Chen!
Emory University, 2021 Spring
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What is a Linear Transformation?



What is a Linear Transformation?

Definition

Let V and W be vector spaces, and T : V — W a function. Then T is called
a linear transformation if it satisfies the following two properties.
1. T preserves addition.
For all \71,\_1‘2 eV, T(\71 + \72) = T(\_;l) =+ T(\_;g)
2. T preserves scalar multiplication.
For all V€ V and r € R, T(r¥) = r'T(¥).



What is a Linear Transformation?

Definition

Let V and W be vector spaces, and T : V — W a function. Then T is called
a linear transformation if it satisfies the following two properties.
1. T preserves addition.
For all \71,\_1‘2 eV, T(\71 + \72) = T(\_;l) =+ T(\_;g)
2. T preserves scalar multiplication.
For all V€ V and r € R, T(r¥) = r'T(¥).

Remark

Note that the sum v + V2 is in V, while the sum T(v1) + T(V2) is in W.
Similarly, rv is scalar multiplication in V, while rT(¥) is scalar
multiplication in W.



Theorem ( Linear Transformations from R to R™ )

If T:R" — R™ is a linear transformation, then T is induced by an m x n
matrix

A=[T@E) T@E) - TE) ],

where {€1,65,...,8&y} is the standard basis of R", and thus for each X € R"



Example

x x
T:R® = R? is defined by T | y :[’;fﬂforau v | eR®.

z Z
One can show that T preserves addition and scalar multiplication, and
hence is a linear transformation. Therefore, the matrix that induces T is

1 0 0
A=|T|o| T|1| T|oO :“é_?].
0 0 1



Remark ( Notation and Terminology )
1. If A is an m X n matrix, then Ta : R" — R™ defined by
Ta(X) = AX for all X € R"

is the linear (or matrix) transformation induced by A.

2. Let V be a vector space. A linear transformation T : V — V is called a
linear operator on V.



Examples and Problems



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.

0:V — W is defined by 0(%) =0 for all X € V.



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.
0:V — W is defined by 0(%) =0 for all X € V.
2. The identity operator on V.

1y : V — V is defined by 1v(X) =X for all X € V.



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.

0:V — W is defined by 0(%) =0 for all X € V.
2. The identity operator on V.

1y : V — V is defined by 1v(X) =X for all X € V.
3. The scalar operator on V.

Let a € R. s, : V — V is defined by s.(X) = aX for all X € V.



Problem

For vector spaces V and W, prove that the zero transformation 0, the
identity operator 1y, and the scalar operator s, are linear transformations.



Problem

For vector spaces V and W, prove that the zero transformation 0, the
identity operator 1y, and the scalar operator s, are linear transformations.

Solution ( the scalar operator )

Let V be a vector space and let a € R.



Problem

For vector spaces V and W, prove that the zero transformation 0, the
identity operator 1y, and the scalar operator s, are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let a € R.

1. Let 4,w € V. Then s,(i) = at and s.(W) = aw. Now
Sa(U4+ W) =a(i+ W) = all + aw = s,(0) + sa(W),

and thus s, preserves addition.



Problem

For vector spaces V and W, prove that the zero transformation 0, the
identity operator 1y, and the scalar operator s, are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let a € R.

1. Let 4,w € V. Then s,(i) = at and s.(W) = aw. Now
Sa(U4+ W) =a(i+ W) = all + aw = s,(0) + sa(W),

and thus s, preserves addition.
2. Let € V and k € R. Then s,(d) = ad. Now

sa (k) = akd = kat = ksa(U),

and thus s, preserves scalar multiplication.



Problem

For vector spaces V and W, prove that the zero transformation 0, the
identity operator 1y, and the scalar operator s, are linear transformations.

Solution ( the scalar operator )
Let V be a vector space and let a € R.
1. Let 4,w € V. Then s,(i) = at and s.(W) = aw. Now
Sa(U4+ W) =a(i+ W) = all + aw = s,(0) + sa(W),

and thus s, preserves addition.
2. Let € V and k € R. Then s,(d) = ad. Now

sa (k) = akd = kat = ksa(U),

and thus s, preserves scalar multiplication.

Since s, preserves addition and scalar multiplication, s, is a linear
transformation. [ ]



Problem (Matrix transposition)

Let R : Mun — My, be a transformation defined by
R(A) = AT for all A € My,,,.

Show that R is a linear transformation.



Problem (Matrix transposition)

Let R : Mun — My, be a transformation defined by
R(A) = AT for all A € My,,,.

Show that R is a linear transformation.

Solution
1. Let A,B € Mp,. Then R(A) = AT and R(B) = BY, so

R(A+B)=(A+B)" = A" + B" =R(A) + R(B).



Problem (Matrix transposition)

Let R : Mun — My, be a transformation defined by
R(A) = AT for all A € My,,,.

Show that R is a linear transformation.

Solution
1. Let A,B € Mp,. Then R(A) = AT and R(B) = BY, so

R(A+B)=(A+B)" = A" + B" =R(A) + R(B).

2. Let A € My, and let k € R. Then R(A) = A", and

R(kA) = (kA)" = kAT = kR(A).



Problem (Matrix transposition)

Let R : Mun — My, be a transformation defined by
R(A) = AT for all A € My,,,.

Show that R is a linear transformation.

Solution
1. Let A,B € Mp,. Then R(A) = AT and R(B) = BY, so

R(A+B)=(A+B)" = A" + B" =R(A) + R(B).

2. Let A € My, and let k € R. Then R(A) = A", and
R(kA) = (kA)" = kAT = kR(A).

Since R preserves addition and scalar multiplication, R is a linear
transformation.



Problem (Evaluation at a point)

For each a € R, the transformation E, : P, — R is defined by
Ea(p) = p(a) for all p € P,.

Show that E, is a linear transformation.



Problem (Evaluation at a point)

For each a € R, the transformation E, : P, — R is defined by
Ea(p) = p(a) for all p € P,.

Show that E, is a linear transformation.

Solution
1. Let p,q € Pn. Then E.(p) = p(a) and Ea(q) = g(a), so

BEa(p+q) = (p +a)(a) = p(a) + q(a) = Ea(p) + Ea(q).



Problem (Evaluation at a point)

For each a € R, the transformation E, : P, — R is defined by
E.(p) = p(a) for all p € Pn.

Show that E, is a linear transformation.

Solution
1. Let p,q € Pn. Then E.(p) = p(a) and Ea(q) = g(a), so

BEa(p+q) = (p +a)(a) = p(a) + q(a) = Ea(p) + Ea(q).

2. Let p € Py and k € R. Then E,(p) = p(a) and

Ea(kp) = (kp)(a) = kp(a) = kEa(p).



Problem (Evaluation at a point)

For each a € R, the transformation E, : P, — R is defined by
E.(p) = p(a) for all p € Pn.

Show that E, is a linear transformation.

Solution
1. Let p,q € Pn. Then E.(p) = p(a) and Ea(q) = g(a), so

BEa(p+q) = (p +a)(a) = p(a) + q(a) = Ea(p) + Ea(q).

2. Let p € Py and k € R. Then E,(p) = p(a) and
Ea(kp) = (kp)(a) = kp(a) = kEa(p).

Since E, preserves addition and scalar multiplication, E, is a linear
transformation.



Problem
Let S: My, — R be a transformation defined by

S(A) = tr(A) for all A € Mpy.

Prove that S is a linear transformation.



Solution
Let A = [a;;] and B = [bjj] be n x n matrices. Then

Zau and S(B an



Solution
Let A = [a;;] and B = [bjj] be n x n matrices. Then

Zau and S(B an-

1. Since A + B = [aj; + by],

S(A—f—B):tr(A—i—B):i aii+bi) = <Za> (Z > S(A)+5(B).

i=1



Solution
Let A = [a;;] and B = [bjj] be n x n matrices. Then

Zau and S(B an

1. Since A + B = [aj; + by],

S(A—f—B):tr(A—i—B):ian—l—bn = <Za> (Z > S(A)+5(B).

i=1
2. Let k € R. Since kA = [kajj],

S(kA) = tr(kA) Zkau_kZau_kS



Solution
Let A = [a;;] and B = [bjj] be n x n matrices. Then

Zau and S(B an

1. Since A + B = [aj; + by],

S(A+B) = tr(A+B) = i(aii‘i'bii) = <ZH: aii) “F(Zn: bii) S(A)+S(B).

i=1 i=1
2. Let k € R. Since kA = [kajj],
S(kA) = tr(kA) Zkan —kZau =kS(A

Therefore, S preserves addition and scalar multiplication, and thus is a
linear transformation. |



Problem

Show that the differentiation and integration operations on P, are linear
transformations. More precisely,

D:P, — P, where D[p(x)] = p/(x) for all p(x) in P,

I:P, — Py where I[p(x)] = p(t)dt for all p(x) in Py

(=]

are linear transformations.



Problem

Show that the differentiation and integration operations on P, are linear
transformations. More precisely,

D:P, — P, where D[p(x)] = p/(x) for all p(x) in P,

I:P, — Py where I[p(x)] = p(t)dt for all p(x) in Py

(=]

are linear transformations.

Solution (Sketch)

[p(x) +a(x)] = p'(x) +d'(x), rp(x)]" = (rp)’(x)

/0 " [p(6) + a(t)] dt = / ")t + / Ta()dt, / Cip(t)dt = / “p(t)de



Properties of Linear Transformations



Properties of Linear Transformations



Properties of Linear Transformations

Theorem

Let V and W be vector spaces, and T : V — W a linear transformation.
Then

1. T preserves the zero vector. T(G) =0.
2. T preserves additive inverses. For all v € V, T(—V) = —T(¥).

3. T preserves linear combinations.
For all \71,\727. .. 7\7m € V and all kl,kg,. .. 7km € R,

T(kivi +koVo + - + kimVm) = ki T(V1) + ko T(V2) + - - - + knd T'(Vim).



Proof.

1. Let 6V denote the zero vector of V and let Gw denote the zero vector of
W. We want to prove that T(0v) = Ow. Let X € V. Then 0X = Oy and

T(0v) = T(0%) = 0T(X) = Ow.



Proof.

1. Let 6V denote the zero vector of V and let Gw denote the zero vector of
W. We want to prove that T(0v) = Ow. Let X € V. Then 0X = Oy and

T(0v) = T(0%) = 0T(X) = Ow.

—

2. Let vV € V; then —V € V is the additive inverse of ¥, so vV + (—¥) = Ov.
Thus
7)) = T(v)
—¥) = Ow

T(—V) = 0w —TF) =-T(®).



Proof.

1.

Let 6V denote the zero vector of V and let Gw denote the zero vector of
W. We want to prove that T(0v) = Ow. Let X € V. Then 0X = Oy and

T(0v) = T(0%) = 0T(X) = Ow.

—

. Let ¥V € V; then —V € V is the additive inverse of ¥, so ¥V + (—V) = Ov.

Thus
T+ (-v) = T(Ov)
TE) +T(-v) = Ow
T(—V) = 0w —TF) =-T(®).

. This result follows from preservation of addition and preservation of

scalar multiplication. A formal proof would be by induction on m.



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) =—1; T(x2 —x) =1, T(x2 +1)=3.

Find T(4x* + 5x — 3).



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) =—1; T(x2 —x) =1, T(x2 +1)=3.

Find T(4x* + 5x — 3).

Solution ( first )
Suppose a(x® + x) + b(x? — x) + ¢(x* + 1) = 4x* + 5x — 3. Then

(a+b+c)x® + (a—b)x + ¢ = 4x> 4 5x — 3.



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) =—1; T(x2 —x) =1, T(x2 +1)=3.

Find T(4x* + 5x — 3).

Solution ( first )
Suppose a(x® + x) + b(x? — x) + ¢(x* + 1) = 4x* + 5x — 3. Then
(a+b+c)x® + (a—b)x + ¢ = 4x> 4 5x — 3.

Solving for a, b, and c results in the unique solution a =6, b =1, ¢ = —3.



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) =—1; T(x2 —x) =1, T(x2 +1)=3.
Find T(4x* + 5x — 3).

Solution ( first )
Suppose a(x® + x) + b(x? — x) + ¢(x* + 1) = 4x* + 5x — 3. Then
(a+b+c)x® + (a—b)x + ¢ = 4x> 4 5x — 3.

Solving for a, b, and c results in the unique solution a =6, b =1, ¢ = —3.
Thus

T(4X2 +5x — 3) T (6()(2 +x)+ (X2 - x)— 3(X2 + 1))
6T (x> +x) + T(x* —x) — 3T(x> + 1)

6(—1)+1—3(3) = —14.



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

2
X =

X =



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

= 00N 507 - )
x = +(x*+x) - 3(x*—x)
L= () =50 +%) =36 —%)
U
T(C) = T (30 +%) + 30 =) = 3T( +%) + 3T —x)



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

= )+ 3 %)
x = +(x*+x) - 3(x*—x)
1 = (X2+1)—%X2+X)—%(X2—X)
I
Tx") = TEE+x)+ 3 —%) = 1T +x) + 3T(x* - x)
= LD+ =
T(x) = T(HE+x) -3 —-x)=1TE +x) - 1T —x)



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

2

2= 4%+ 63 %)
X = %(XQ-FX)—%(XZ_X)
L= (41— 36" +%) - 3( = %)
U
T(C) = T (30 +%) + 30 =) = 3T( +%) + 3T —x)

H-D+ 30 =

T(x) = T(HE+x) -3 —-x)=1TE +x) - 1T —x)
= (-)-i1)=-1

T(1) = T(x+1)-1ix*+x) —1i(x*—x)
= TE*+1)— 1T +x) - 1T(x* —x)



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

= 0+ 507 - x)
x = +(x*+x) - 3(x*—x)
L= (41— 36" +%) - 3( = %)
U
T(C) = T (30 +%) + 30 =) = 3T( +%) + 3T —x)

H-D+ 30 =

T(x) = T(HE+x) -3 —-x)=1TE +x) - 1T —x)
= (-)-i1)=-1

T(1) = T(x+1)-1ix*+x) —1i(x*—x)
= TE*+1)— 1T +x) - 1T(x* —x)

T(4x” 4 5x — 3) = 4T(x°) + 5T (x) — 3T(1) = 4(0) + 5(—1) — 3(3) = —14.
|



Remark
The advantage of the second solution over the first is that if you were now
asked to find T(—6x> — 13x +9), it is easy to use T(x?) = 0, T(x) = —1 and
T(1) = 3:
T(—6x* —13x+9) = —6T(x%)—13T(x)+9T(1)
—6(0) — 13(—1) +9(3) = 13 + 27 = 40.



Remark
The advantage of the second solution over the first is that if you were now
asked to find T(—6x> — 13x +9), it is easy to use T(x?) = 0, T(x) = —1 and
T(1) =3:

T(—6x> —13x+9) = —6T(x°) — 13T(x) +9T(1)

—6(0) — 13(—1) +9(3) = 13 + 27 = 40.
More generally,
T(ax®+bx+c) = aT(x’)+bT(x)+cT(1)
= a(0)+b(—=1)+¢c(3) = —b + 3c.



Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if,

S(V) = T(V) for every v € V.



Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if,

S(V) = T(V) for every v € V.

Theorem

Let V and W be vector spaces, where
V = span{vi,Va,...,Vn}.

Suppose that S and T are linear transformations from V to W. If
S(vi) = T(+) for all i, 1 <i<mn, then S=T.



Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if,

S(V) = T(V) for every v € V.

Theorem
Let V and W be vector spaces, where
V = span{vi,Va,...,Vn}.

Suppose that S and T are linear transformations from V to W. If
S(vi) = T(+) for all i, 1 <i<mn, then S=T.

Remark

This theorem tells us that a linear transformation is completely determined
by its actions on a spanning set.



Proof.

We must show that S(v) = T(¥V) for each v € V. Let v € V. Then (since V
is spanned by V1, Va, ..., Vn), there exist ki, ks, ..., ks € R so that

V=kiVi +koVo + -+ + kn V.



Proof.

We must show that S(v) = T(¥V) for each v € V. Let v € V. Then (since V

is spanned by V1, Va, ..., Vn), there exist ki, ks, ..., ks € R so that
V=kiVi +koVo + -+ + kn V.

It follows that

SF) = S(ki¥i +ko¥ + - + ko¥n)
kiS(V1) +kaS(Va) + -+ - + knS(Va)
i T(%1) + ko T(F2) + - + kn T(n)
= T(kiVi +kaVo + -+ knVn)

= T().

Therefore, S = T. |



Constructing Linear Transformations
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Constructing Linear Transformations

Theorem

Let V and W be vector spaces, let B = {61, ba, ... ,Bn} be a basis of V, and
let W1, W2,...,Wn be (not necessarily distinct) vectors of W.



Constructing Linear Transformations

Theorem

Let V and W be vector spaces, let B = {Bl, ba, ... ,Bn} be a basis of V, and
let W1, W2,...,Wn be (not necessarily distinct) vectors of W. Then

—

1. There exists a linear transformation T : V. — W such that T(b;) = w;
for each i, 1 <1i < n;



Constructing Linear Transformations

Theorem

Let V and W be vector spaces, let B = {Bl, ba, ... ,Bn} be a basis of V, and
let W1, W2,...,Wn be (not necessarily distinct) vectors of W. Then

—

1. There exists a linear transformation T : V. — W such that T(b;) = w;
for each i, 1 <1i < n;

2. This transformation is unique;



Constructing Linear Transformations

Theorem

Let V and W be vector spaces, let B = {Bl, ba, ... ,Bn} be a basis of V, and
let W1, W2,...,Wn be (not necessarily distinct) vectors of W. Then

—

1. There exists a linear transformation T : V. — W such that T(b;) = w;
for each i, 1 <1i < n;

2. This transformation is unique;

3. If
v:k1b1+k2b2+"'+knbn

is a vector of V, then

T(\_;) =kiwi + kowa + -+ + knWp.



Proof.

Suppose V € V. Since B is a basis, there exist unique scalars
ki,ks,...,kn € R so that Vv = klgl + kzgg + .+ kngn. We now define
T:V =W by

T(V) = kiwi + kawa + -+ - + knWn
for each ¥ = kb1 + koby + - - - 4+ knby in V. From this definition, T(b;) = W
for each i, 1 <i<n.

To prove that T is a linear transformation, prove that T preserves addition
and scalar multiplication. Let v,u € V. Then

¢ =kib; +kobs 4 - +kabn and &= l1b; + lobs + -+ + lubn

for some ki,ks, ..., ky € R and #1,02,...,0, € R.



Proof. (continued)

T(¥+1d) = T[(kib1 +kebz+ - +knbn) + (b1 + foba + - - + £uby)]
= T[(ki + £1)b1 + (ka2 + L2)b2 + - + (kn + £n)bn]
= (ki + )W + (ko + l2)Wo + - -+ + (kn + £n)Wn
= (kw1 +koWa + -+ + knWn) + (L1W1 + loWa + -+ - + {nWy)
= T(kibi +koba + - - + knby) + T(£1b1 + Laba + - - - + £uby)
= T(F) + T(8).

Therefore, T preserves addition.



Proof. (continued)

T(F+1d) = T[(kibi +kabs + -+ knby) + (€1b1 + £2b2 + - - + ubn)]
= T[(ki + £1)b1 + (ka2 + L2)b2 + - + (kn + £n)bn]
= (ki + )W + (ko + l2)Wo + - -+ + (kn + £n)Wn
= (kiwy +koWo + - +knWa) + (1W1 + LaWa + - - - + LnWn)
= T(kib +koba 4 - - 4+ knby) 4+ T(£1b1 + £aba 4 - - + £nby)
= T() + T(d).

Therefore, T preserves addition. Let ¥V be as already defined and let r € R.

Then

T(rv)

T[I‘(klgl + k262 + et + kngn)}
T[(rk1)b1 + (rka)ba + - - - + (rkn)bu]

I‘(kl\ﬁl + k2“72 + - + knW/n)
rT(kib1 + kabz + - - + kubu)
T (V).

Therefore, T preserves scalar multiplication.



Proof. (continued)

Finally, the previous Theorem guarantees that T is unique: since B is a
basis (and hence a spanning set), the action of T is completely determined

by the fact that T(bi) = w; for each i, 1 <i < n. This completes the proof
of the theorem. |



Proof. (continued)

Finally, the previous Theorem guarantees that T is unique: since B is a
basis (and hence a spanning set), the action of T is completely determined

by the fact that T(bi) = w; for each i, 1 <i < n. This completes the proof
of the theorem. |

Remark

The significance of this Theorem is that it gives us the ability to define
linear transformations between vector spaces, a useful tool in what follows.



P2 Ma2

Problem
B= {1 +x,x+x%1 —|—x2} is a basis of Ps. Let

10 0 1 0
weloo) asTo] weld

)



P2 Ma2

Problem

B= {1+X,x+x2,1+x2} is a basis of Ps. Let

10 0 1 00
velo ol =V we0d]

Find a linear transformation T : Py — Mo so the

T1+x)=A;, T(x+x°)=As and T(1+x%)=As,



P2 Ma2

Problem
B= {1 +x,x+x%1 —|—x2} is a basis of Ps. Let

10 0 1 00
velo ol =V we0d]

Find a linear transformation T : P2 — Mas so the
T1+x)=A;, T(x+x°)=As and T(1+x%)=As,

by specifying T(a + bx 4 cx?) for any a + bx + cx* € Ps.



Solution

Notice that (1 +x) + (x +x%) — (1 + x?) = 2x, and thus

e %(1—|—X)—|—%(X+X2)—%(1+X2)7
I
T(x) = 3T(+x)+3T+x%) = 3T +x%)

%A1 + %Az — %A:a

_ [t o] a0 t] 10 0]
2loo]Tzl1 0] 20 1|~

ol



Solution (continued)
Next, 1 = (1 +x) —x, so T(1) = T(1 4+ x) — T(x), and thus

w-sa[ 4]-[5 8]l 4]



Solution (continued)
Next, 1 = (1 +x) —x, so T(1) = T(1 4+ x) — T(x), and thus

e I P R B I

Finally, x* = (x + x?) — x, so T(x?) = T(x + x?) — T(x), and thus

LI R FRI R !

D=



Solution (continued)

Next, 1 = (1 +x) —x, so T(1) = T(1 4+ x) — T(x), and thus

e I P R B I

Finally, x* = (x + x?) — x, so T(x?) = T(x + x?) — T(x), and thus

LI R FRI R !

Therefore,

D=

N

T(a4+bx+cx’) = aT(1)+bT(x) +cT(x?)

1 -1 1 1 -1 1
_ a b c
=il el e[

1 [ a+b—c —a+4+b+c }

2| —at+b+ec a—b+c



Solution ( Two — sketch )

Since the set {1 +x,x 4+ x%,1 + x>} is a basis of Pa, there exits unique
representation:

a+bx +cx® =01 (14 x) 4 La(x +x%) + £3(1 + x7)
=l + l3) + (b1 + l2)x + (b2 + 63)X2

I
{1 +403=a
V1 +0=D
Vo 4+ 03 =c
4
6 =1%(a+b—c)
ly=%(—a+b+c)
l3=1(a—b—c)



Solution ( Two — sketch )

Since the set {1 +x,x 4+ x%,1 + x>} is a basis of Pa, there exits unique
representation:

a+bx +cx® =01 (14 x) 4 La(x +x%) + £3(1 + x7)
=l + l3) + (b1 + L2)x + (b2 + 63)X2

U
{1 +403=a
V1 +0=D
Oy + 03 =c
4
6 =1%(a+b—c)
ly=%(—a+b+c)
l3=1(a—b—c)



Solution (Two — continued)

Hence,
T[a+bx+cx2}
I
T [1(1 4 %) + L2(x +x°) + £3(1 +x7)]
I
OT+x] + LTx+x°] + 4T +x7]
I
€1|:(1) 8]+£2|:(1] (1):|+€3|:8 (1):|
I
%(a—kb—c)[é 8}+7(—a+b+c){? é]—f—f(a—b—i-c){

— o



Problem

Let V be a vector space, and T be a linear operator on V, and v,w € V
such that
T(v+w)=v—2w and T(2v—w)=2v.



Problem
Let V be a vector space, and T be a linear operator on V, and v,w € V

such that
T(v+w)=v—2w and T(2v—w)=2v.

Find T(v) and T(w).



Solution

T() =T[5 (v +w] + [2v — w))

zéT[v—i—w]—l—%T[Qv—w]
:é(V72W)+§V
—vfgw
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